References for concept and objectives

Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling.
J.C. Betts, P.T. Lukey, L.C. Robb, R.A. McAdam, K. Duncan Mol. Microbiol. 2002, 43, 717-731.

Microbiology: TB - A new target, a new drug.
S.T. Cole, P.M. Alzari Science 2005, 307, 214-215.

Multi-subunit acetyl-CoA carboxylases
J.E. Cronan Jr., G.L. Waldrop Prog. Lipid. Res. 2002, 41, 407-435.

Characterization of the helicase activity and substrate specificity of Mycobacterium tuberculosis UvrD.
E. Curti, S.J. Smerdon, E.O Davis J. Bacteriol. 2007, 189, 1542-1555.

Structure-based design, synthesis and preliminary evaluation of selective inhibitors of dihydrofolate reductase from Mycobacterium tuberculosis
M.H.R.I. El-Hamamsy, A.W. Smith,  A.S. Thompson, M.D. Threadgill Bioorg. Med. Chem. 2007, 15, 4552-4576.

Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent.
P.I. Fields, R.V. Swanson, C.G. Haidaris, F. Heffron PNAS USA 1986, 83, 5189-5193.

Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis.
R. Gande, K.J. Gibson, A.K. Brown, K. Krumbach, L.G. Dover, H. Sahm, S. Shioyama, T. Oikawa, G.S. Besra, L. Eggeling J. Biol. Chem. 2004, 279, 44847–44857.

The analysis of the intra macrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell.
S. Kohler, V. Foulonge, S. Ouahrani-Bettache, G. Bourg, J. Teyssier, M. Ramuz, J.P. Liautard PNAS USA 2002, 99, 15711-15716.

Diarylquinolines target subunit c of mycobacterial ATP synthase
A. Koul, N. Dendouga, K. Vergauwen, B. Molenberghs, L. Vranckx, R. Willebrords, Z. Ristic, H. Lill, I. Dorange, J. Guillemont, D. Bald, K. Andries Nat. Chem. Biol. 2007, 3, 323-324.

Functional Analysis of Substrate and Cofactor Complex Structures of a Thymidylate Synthase-Complementing Protein.
I.I. Mathews, A.M. Deacon, J.M. Canaves, D. McMullan, S.A. Lesley, S. Agarwalla, P. Kuhn Structure 2003, 11, 677-690.

An alternative flavin-dependent mechanism for thymidylate synthesis.
H. Myllykallio, G. Lipowski, D. Leduc, J. Filee, P. Forterre, U. Liebl Science 2002, 297, 105-107.

Effect of n-octanesulphonylacetamide (OSA) on ATP and protein expression in Mycobacterium bovis BCG. 
N.M. Parrish, C.G. Ko, M.A. Hughes, C.A. Townsend, J.D. Dick J. Antimicrob. Chemother. 2004, 54, 722-729.

Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis.  
L. Pelkmans, E. Fava, H. Grabner, M. Hannus, B. Habermann, E. Krausz, M. Zerial Nature 2005, 436, 78-86.

Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria.
S. Petrella, E. Cambau, A. Chauffour, K. Andries, V. Jarlier, W. Sougakoff Antimicrob. Agents Chemother. 2006, 50, 2853-2856.

Mycobacterium tuberculosis gene expression profiling within the context of protein networks.  
H. Rachman, M. Strong, U. Schaible, J. Schuchhardt, K. Hagens, H. Mollenkopf, D. Eisenberg, S.H.E. Kaufmann Microbes Infect. 2006, 8, 747–757.

Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis.
H. Rachman, M. Strong, T. Ulrichs, L. Grode, J. Schuchhardt, H. Mollenkopf, G.A. Kosmiadi, D. Eisenberg, S.H.E. Kaufmann Infect. Immun. 2006, 74, 1233-1242.

The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA.
L. Rand, J. Hinds, B. Springer, P. Sander, R.S. Buxton, E.O. Davis Mol. Microbiol. 2003, 50, 1031-1042.

Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages.
J. Rengarajan, B.R. Bloom, E.J. Rubin PNAS USA 2005, 102, 8327-8332.

Mycobacterium tuberculosis: Here today, and here tomorrow.
D.G. Russell Nat. Rev. Mol. Cell. Biol. 2001, 2, 569-577.

Genes required for mycobacterial growth defined by high density mutagenesis. 
C.M. Sassetti, D.H. Boyd, E.J. Rubin Mol. Microbiol. 2003, 48, 77-84.

Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment.
D. Schnappinger, S. Ehrt, M.I. Voskuil, Y. Liu, J.A. Mangan, I.M. Monahan, G. Dolganov, B. Efron, P.D. Butcher, C. Nathan, G.K. Schoolnik J. Exp. Med. 2003, 198, 693-704.

Protein production by auto-induction in high-density shaking cultures
F.W. Studier Protein Expr. Purif. 2005, 41, 207–234.

Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis.
S. Sturgill-Koszycki, U.E. Schaible, D.G. Russell EMBO J. 1996, 15, 6960-6968.

Acetyl-coenzyme A carboxylase: Crucial metabolic enzyme and attractive target for drug discovery.
L. Tong Cell. Mol. Life Sci. 2005, 62, 1784–1803.

Title: New Approaches to Target Tuberculosis

Acronym: NATT

Contract number: 222965

EC contribution: 2.994.478 €

Duration: 36 months

Starting date: 01/10/2008

Collaborative project